Source code for pytorch3d.renderer.cameras

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.

# pyre-unsafe

import math
import warnings
from typing import Any, Dict, List, Optional, Sequence, Tuple, Union

import numpy as np
import torch
import torch.nn.functional as F
from pytorch3d.common.datatypes import Device
from pytorch3d.transforms import Rotate, Transform3d, Translate

from .utils import convert_to_tensors_and_broadcast, TensorProperties


# Default values for rotation and translation matrices.
_R = torch.eye(3)[None]  # (1, 3, 3)
_T = torch.zeros(1, 3)  # (1, 3)

# An input which is a float per batch element
_BatchFloatType = Union[float, Sequence[float], torch.Tensor]

# one or two floats per batch element
_FocalLengthType = Union[
    float, Sequence[Tuple[float]], Sequence[Tuple[float, float]], torch.Tensor
]


[docs] class CamerasBase(TensorProperties): """ `CamerasBase` implements a base class for all cameras. For cameras, there are four different coordinate systems (or spaces) - World coordinate system: This is the system the object lives - the world. - Camera view coordinate system: This is the system that has its origin on the camera and the Z-axis perpendicular to the image plane. In PyTorch3D, we assume that +X points left, and +Y points up and +Z points out from the image plane. The transformation from world --> view happens after applying a rotation (R) and translation (T) - NDC coordinate system: This is the normalized coordinate system that confines points in a volume the rendered part of the object or scene, also known as view volume. For square images, given the PyTorch3D convention, (+1, +1, znear) is the top left near corner, and (-1, -1, zfar) is the bottom right far corner of the volume. The transformation from view --> NDC happens after applying the camera projection matrix (P) if defined in NDC space. For non square images, we scale the points such that smallest side has range [-1, 1] and the largest side has range [-u, u], with u > 1. - Screen coordinate system: This is another representation of the view volume with the XY coordinates defined in image space instead of a normalized space. An illustration of the coordinate systems can be found in pytorch3d/docs/notes/cameras.md. CameraBase defines methods that are common to all camera models: - `get_camera_center` that returns the optical center of the camera in world coordinates - `get_world_to_view_transform` which returns a 3D transform from world coordinates to the camera view coordinates (R, T) - `get_full_projection_transform` which composes the projection transform (P) with the world-to-view transform (R, T) - `transform_points` which takes a set of input points in world coordinates and projects to the space the camera is defined in (NDC or screen) - `get_ndc_camera_transform` which defines the transform from screen/NDC to PyTorch3D's NDC space - `transform_points_ndc` which takes a set of points in world coordinates and projects them to PyTorch3D's NDC space - `transform_points_screen` which takes a set of points in world coordinates and projects them to screen space For each new camera, one should implement the `get_projection_transform` routine that returns the mapping from camera view coordinates to camera coordinates (NDC or screen). Another useful function that is specific to each camera model is `unproject_points` which sends points from camera coordinates (NDC or screen) back to camera view or world coordinates depending on the `world_coordinates` boolean argument of the function. """ # Used in __getitem__ to index the relevant fields # When creating a new camera, this should be set in the __init__ _FIELDS: Tuple[str, ...] = () # Names of fields which are a constant property of the whole batch, rather # than themselves a batch of data. # When joining objects into a batch, they will have to agree. _SHARED_FIELDS: Tuple[str, ...] = ()
[docs] def get_projection_transform(self, **kwargs): """ Calculate the projective transformation matrix. Args: **kwargs: parameters for the projection can be passed in as keyword arguments to override the default values set in `__init__`. Return: a `Transform3d` object which represents a batch of projection matrices of shape (N, 3, 3) """ raise NotImplementedError()
[docs] def unproject_points(self, xy_depth: torch.Tensor, **kwargs): """ Transform input points from camera coordinates (NDC or screen) to the world / camera coordinates. Each of the input points `xy_depth` of shape (..., 3) is a concatenation of the x, y location and its depth. For instance, for an input 2D tensor of shape `(num_points, 3)` `xy_depth` takes the following form: `xy_depth[i] = [x[i], y[i], depth[i]]`, for a each point at an index `i`. The following example demonstrates the relationship between `transform_points` and `unproject_points`: .. code-block:: python cameras = # camera object derived from CamerasBase xyz = # 3D points of shape (batch_size, num_points, 3) # transform xyz to the camera view coordinates xyz_cam = cameras.get_world_to_view_transform().transform_points(xyz) # extract the depth of each point as the 3rd coord of xyz_cam depth = xyz_cam[:, :, 2:] # project the points xyz to the camera xy = cameras.transform_points(xyz)[:, :, :2] # append depth to xy xy_depth = torch.cat((xy, depth), dim=2) # unproject to the world coordinates xyz_unproj_world = cameras.unproject_points(xy_depth, world_coordinates=True) print(torch.allclose(xyz, xyz_unproj_world)) # True # unproject to the camera coordinates xyz_unproj = cameras.unproject_points(xy_depth, world_coordinates=False) print(torch.allclose(xyz_cam, xyz_unproj)) # True Args: xy_depth: torch tensor of shape (..., 3). world_coordinates: If `True`, unprojects the points back to world coordinates using the camera extrinsics `R` and `T`. `False` ignores `R` and `T` and unprojects to the camera view coordinates. from_ndc: If `False` (default), assumes xy part of input is in NDC space if self.in_ndc(), otherwise in screen space. If `True`, assumes xy is in NDC space even if the camera is defined in screen space. Returns new_points: unprojected points with the same shape as `xy_depth`. """ raise NotImplementedError()
[docs] def get_camera_center(self, **kwargs) -> torch.Tensor: """ Return the 3D location of the camera optical center in the world coordinates. Args: **kwargs: parameters for the camera extrinsics can be passed in as keyword arguments to override the default values set in __init__. Setting R or T here will update the values set in init as these values may be needed later on in the rendering pipeline e.g. for lighting calculations. Returns: C: a batch of 3D locations of shape (N, 3) denoting the locations of the center of each camera in the batch. """ w2v_trans = self.get_world_to_view_transform(**kwargs) P = w2v_trans.inverse().get_matrix() # the camera center is the translation component (the first 3 elements # of the last row) of the inverted world-to-view # transform (4x4 RT matrix) C = P[:, 3, :3] return C
[docs] def get_world_to_view_transform(self, **kwargs) -> Transform3d: """ Return the world-to-view transform. Args: **kwargs: parameters for the camera extrinsics can be passed in as keyword arguments to override the default values set in __init__. Setting R and T here will update the values set in init as these values may be needed later on in the rendering pipeline e.g. for lighting calculations. Returns: A Transform3d object which represents a batch of transforms of shape (N, 3, 3) """ R: torch.Tensor = kwargs.get("R", self.R) T: torch.Tensor = kwargs.get("T", self.T) self.R = R self.T = T world_to_view_transform = get_world_to_view_transform(R=R, T=T) return world_to_view_transform
[docs] def get_full_projection_transform(self, **kwargs) -> Transform3d: """ Return the full world-to-camera transform composing the world-to-view and view-to-camera transforms. If camera is defined in NDC space, the projected points are in NDC space. If camera is defined in screen space, the projected points are in screen space. Args: **kwargs: parameters for the projection transforms can be passed in as keyword arguments to override the default values set in __init__. Setting R and T here will update the values set in init as these values may be needed later on in the rendering pipeline e.g. for lighting calculations. Returns: a Transform3d object which represents a batch of transforms of shape (N, 3, 3) """ self.R: torch.Tensor = kwargs.get("R", self.R) self.T: torch.Tensor = kwargs.get("T", self.T) world_to_view_transform = self.get_world_to_view_transform(R=self.R, T=self.T) view_to_proj_transform = self.get_projection_transform(**kwargs) return world_to_view_transform.compose(view_to_proj_transform)
[docs] def transform_points( self, points, eps: Optional[float] = None, **kwargs ) -> torch.Tensor: """ Transform input points from world to camera space. If camera is defined in NDC space, the projected points are in NDC space. If camera is defined in screen space, the projected points are in screen space. For `CamerasBase.transform_points`, setting `eps > 0` stabilizes gradients since it leads to avoiding division by excessively low numbers for points close to the camera plane. Args: points: torch tensor of shape (..., 3). eps: If eps!=None, the argument is used to clamp the divisor in the homogeneous normalization of the points transformed to the ndc space. Please see `transforms.Transform3d.transform_points` for details. For `CamerasBase.transform_points`, setting `eps > 0` stabilizes gradients since it leads to avoiding division by excessively low numbers for points close to the camera plane. Returns new_points: transformed points with the same shape as the input. """ world_to_proj_transform = self.get_full_projection_transform(**kwargs) return world_to_proj_transform.transform_points(points, eps=eps)
[docs] def get_ndc_camera_transform(self, **kwargs) -> Transform3d: """ Returns the transform from camera projection space (screen or NDC) to NDC space. For cameras that can be specified in screen space, this transform allows points to be converted from screen to NDC space. The default transform scales the points from [0, W]x[0, H] to [-1, 1]x[-u, u] or [-u, u]x[-1, 1] where u > 1 is the aspect ratio of the image. This function should be modified per camera definitions if need be, e.g. for Perspective/Orthographic cameras we provide a custom implementation. This transform assumes PyTorch3D coordinate system conventions for both the NDC space and the input points. This transform interfaces with the PyTorch3D renderer which assumes input points to the renderer to be in NDC space. """ if self.in_ndc(): return Transform3d(device=self.device, dtype=torch.float32) else: # For custom cameras which can be defined in screen space, # users might might have to implement the screen to NDC transform based # on the definition of the camera parameters. # See PerspectiveCameras/OrthographicCameras for an example. # We don't flip xy because we assume that world points are in # PyTorch3D coordinates, and thus conversion from screen to ndc # is a mere scaling from image to [-1, 1] scale. image_size = kwargs.get("image_size", self.get_image_size()) return get_screen_to_ndc_transform( self, with_xyflip=False, image_size=image_size )
[docs] def transform_points_ndc( self, points, eps: Optional[float] = None, **kwargs ) -> torch.Tensor: """ Transforms points from PyTorch3D world/camera space to NDC space. Input points follow the PyTorch3D coordinate system conventions: +X left, +Y up. Output points are in NDC space: +X left, +Y up, origin at image center. Args: points: torch tensor of shape (..., 3). eps: If eps!=None, the argument is used to clamp the divisor in the homogeneous normalization of the points transformed to the ndc space. Please see `transforms.Transform3d.transform_points` for details. For `CamerasBase.transform_points`, setting `eps > 0` stabilizes gradients since it leads to avoiding division by excessively low numbers for points close to the camera plane. Returns new_points: transformed points with the same shape as the input. """ world_to_ndc_transform = self.get_full_projection_transform(**kwargs) if not self.in_ndc(): to_ndc_transform = self.get_ndc_camera_transform(**kwargs) world_to_ndc_transform = world_to_ndc_transform.compose(to_ndc_transform) return world_to_ndc_transform.transform_points(points, eps=eps)
[docs] def transform_points_screen( self, points, eps: Optional[float] = None, with_xyflip: bool = True, **kwargs ) -> torch.Tensor: """ Transforms points from PyTorch3D world/camera space to screen space. Input points follow the PyTorch3D coordinate system conventions: +X left, +Y up. Output points are in screen space: +X right, +Y down, origin at top left corner. Args: points: torch tensor of shape (..., 3). eps: If eps!=None, the argument is used to clamp the divisor in the homogeneous normalization of the points transformed to the ndc space. Please see `transforms.Transform3d.transform_points` for details. For `CamerasBase.transform_points`, setting `eps > 0` stabilizes gradients since it leads to avoiding division by excessively low numbers for points close to the camera plane. with_xyflip: If True, flip x and y directions. In world/camera/ndc coords, +x points to the left and +y up. If with_xyflip is true, in screen coords +x points right, and +y down, following the usual RGB image convention. Warning: do not set to False unless you know what you're doing! Returns new_points: transformed points with the same shape as the input. """ points_ndc = self.transform_points_ndc(points, eps=eps, **kwargs) image_size = kwargs.get("image_size", self.get_image_size()) return get_ndc_to_screen_transform( self, with_xyflip=with_xyflip, image_size=image_size ).transform_points(points_ndc, eps=eps)
[docs] def clone(self): """ Returns a copy of `self`. """ cam_type = type(self) other = cam_type(device=self.device) return super().clone(other)
[docs] def is_perspective(self): raise NotImplementedError()
[docs] def in_ndc(self): """ Specifies whether the camera is defined in NDC space or in screen (image) space """ raise NotImplementedError()
[docs] def get_znear(self): return getattr(self, "znear", None)
[docs] def get_image_size(self): """ Returns the image size, if provided, expected in the form of (height, width) The image size is used for conversion of projected points to screen coordinates. """ return getattr(self, "image_size", None)
[docs] def __getitem__( self, index: Union[int, List[int], torch.BoolTensor, torch.LongTensor] ) -> "CamerasBase": """ Override for the __getitem__ method in TensorProperties which needs to be refactored. Args: index: an integer index, list/tensor of integer indices, or tensor of boolean indicators used to filter all the fields in the cameras given by self._FIELDS. Returns: an instance of the current cameras class with only the values at the selected index. """ kwargs = {} tensor_types = { # pyre-fixme[16]: Module `cuda` has no attribute `BoolTensor`. "bool": (torch.BoolTensor, torch.cuda.BoolTensor), # pyre-fixme[16]: Module `cuda` has no attribute `LongTensor`. "long": (torch.LongTensor, torch.cuda.LongTensor), } if not isinstance( index, (int, list, *tensor_types["bool"], *tensor_types["long"]) ) or ( isinstance(index, list) and not all(isinstance(i, int) and not isinstance(i, bool) for i in index) ): msg = ( "Invalid index type, expected int, List[int] or Bool/LongTensor; got %r" ) raise ValueError(msg % type(index)) if isinstance(index, int): index = [index] if isinstance(index, tensor_types["bool"]): # pyre-fixme[16]: Item `List` of `Union[List[int], BoolTensor, # LongTensor]` has no attribute `ndim`. # pyre-fixme[16]: Item `List` of `Union[List[int], BoolTensor, # LongTensor]` has no attribute `shape`. if index.ndim != 1 or index.shape[0] != len(self): raise ValueError( # pyre-fixme[16]: Item `List` of `Union[List[int], BoolTensor, # LongTensor]` has no attribute `shape`. f"Boolean index of shape {index.shape} does not match cameras" ) elif max(index) >= len(self): raise IndexError(f"Index {max(index)} is out of bounds for select cameras") for field in self._FIELDS: val = getattr(self, field, None) if val is None: continue # e.g. "in_ndc" is set as attribute "_in_ndc" on the class # but provided as "in_ndc" on initialization if field.startswith("_"): field = field[1:] if isinstance(val, (str, bool)): kwargs[field] = val elif isinstance(val, torch.Tensor): # In the init, all inputs will be converted to # tensors before setting as attributes kwargs[field] = val[index] else: raise ValueError(f"Field {field} type is not supported for indexing") kwargs["device"] = self.device return self.__class__(**kwargs)
############################################################ # Field of View Camera Classes # ############################################################
[docs] def OpenGLPerspectiveCameras( znear: _BatchFloatType = 1.0, zfar: _BatchFloatType = 100.0, aspect_ratio: _BatchFloatType = 1.0, fov: _BatchFloatType = 60.0, degrees: bool = True, R: torch.Tensor = _R, T: torch.Tensor = _T, device: Device = "cpu", ) -> "FoVPerspectiveCameras": """ OpenGLPerspectiveCameras has been DEPRECATED. Use FoVPerspectiveCameras instead. Preserving OpenGLPerspectiveCameras for backward compatibility. """ warnings.warn( """OpenGLPerspectiveCameras is deprecated, Use FoVPerspectiveCameras instead. OpenGLPerspectiveCameras will be removed in future releases.""", PendingDeprecationWarning, ) return FoVPerspectiveCameras( znear=znear, zfar=zfar, aspect_ratio=aspect_ratio, fov=fov, degrees=degrees, R=R, T=T, device=device, )
[docs] class FoVPerspectiveCameras(CamerasBase): """ A class which stores a batch of parameters to generate a batch of projection matrices by specifying the field of view. The definitions of the parameters follow the OpenGL perspective camera. The extrinsics of the camera (R and T matrices) can also be set in the initializer or passed in to `get_full_projection_transform` to get the full transformation from world -> ndc. The `transform_points` method calculates the full world -> ndc transform and then applies it to the input points. The transforms can also be returned separately as Transform3d objects. * Setting the Aspect Ratio for Non Square Images * If the desired output image size is non square (i.e. a tuple of (H, W) where H != W) the aspect ratio needs special consideration: There are two aspect ratios to be aware of: - the aspect ratio of each pixel - the aspect ratio of the output image The `aspect_ratio` setting in the FoVPerspectiveCameras sets the pixel aspect ratio. When using this camera with the differentiable rasterizer be aware that in the rasterizer we assume square pixels, but allow variable image aspect ratio (i.e rectangle images). In most cases you will want to set the camera `aspect_ratio=1.0` (i.e. square pixels) and only vary the output image dimensions in pixels for rasterization. """ # For __getitem__ _FIELDS = ( "K", "znear", "zfar", "aspect_ratio", "fov", "R", "T", "degrees", ) _SHARED_FIELDS = ("degrees",)
[docs] def __init__( self, znear: _BatchFloatType = 1.0, zfar: _BatchFloatType = 100.0, aspect_ratio: _BatchFloatType = 1.0, fov: _BatchFloatType = 60.0, degrees: bool = True, R: torch.Tensor = _R, T: torch.Tensor = _T, K: Optional[torch.Tensor] = None, device: Device = "cpu", ) -> None: """ Args: znear: near clipping plane of the view frustrum. zfar: far clipping plane of the view frustrum. aspect_ratio: aspect ratio of the image pixels. 1.0 indicates square pixels. fov: field of view angle of the camera. degrees: bool, set to True if fov is specified in degrees. R: Rotation matrix of shape (N, 3, 3) T: Translation matrix of shape (N, 3) K: (optional) A calibration matrix of shape (N, 4, 4) If provided, don't need znear, zfar, fov, aspect_ratio, degrees device: Device (as str or torch.device) """ # The initializer formats all inputs to torch tensors and broadcasts # all the inputs to have the same batch dimension where necessary. super().__init__( device=device, znear=znear, zfar=zfar, aspect_ratio=aspect_ratio, fov=fov, R=R, T=T, K=K, ) # No need to convert to tensor or broadcast. self.degrees = degrees
[docs] def compute_projection_matrix( self, znear, zfar, fov, aspect_ratio, degrees: bool ) -> torch.Tensor: """ Compute the calibration matrix K of shape (N, 4, 4) Args: znear: near clipping plane of the view frustrum. zfar: far clipping plane of the view frustrum. fov: field of view angle of the camera. aspect_ratio: aspect ratio of the image pixels. 1.0 indicates square pixels. degrees: bool, set to True if fov is specified in degrees. Returns: torch.FloatTensor of the calibration matrix with shape (N, 4, 4) """ K = torch.zeros((self._N, 4, 4), device=self.device, dtype=torch.float32) ones = torch.ones((self._N), dtype=torch.float32, device=self.device) if degrees: fov = (np.pi / 180) * fov if not torch.is_tensor(fov): fov = torch.tensor(fov, device=self.device) tanHalfFov = torch.tan((fov / 2)) max_y = tanHalfFov * znear min_y = -max_y max_x = max_y * aspect_ratio min_x = -max_x # NOTE: In OpenGL the projection matrix changes the handedness of the # coordinate frame. i.e the NDC space positive z direction is the # camera space negative z direction. This is because the sign of the z # in the projection matrix is set to -1.0. # In pytorch3d we maintain a right handed coordinate system throughout # so the so the z sign is 1.0. z_sign = 1.0 # pyre-fixme[58]: `/` is not supported for operand types `float` and `Tensor`. K[:, 0, 0] = 2.0 * znear / (max_x - min_x) # pyre-fixme[58]: `/` is not supported for operand types `float` and `Tensor`. K[:, 1, 1] = 2.0 * znear / (max_y - min_y) K[:, 0, 2] = (max_x + min_x) / (max_x - min_x) K[:, 1, 2] = (max_y + min_y) / (max_y - min_y) K[:, 3, 2] = z_sign * ones # NOTE: This maps the z coordinate from [0, 1] where z = 0 if the point # is at the near clipping plane and z = 1 when the point is at the far # clipping plane. K[:, 2, 2] = z_sign * zfar / (zfar - znear) K[:, 2, 3] = -(zfar * znear) / (zfar - znear) return K
[docs] def get_projection_transform(self, **kwargs) -> Transform3d: """ Calculate the perspective projection matrix with a symmetric viewing frustrum. Use column major order. The viewing frustrum will be projected into ndc, s.t. (max_x, max_y) -> (+1, +1) (min_x, min_y) -> (-1, -1) Args: **kwargs: parameters for the projection can be passed in as keyword arguments to override the default values set in `__init__`. Return: a Transform3d object which represents a batch of projection matrices of shape (N, 4, 4) .. code-block:: python h1 = (max_y + min_y)/(max_y - min_y) w1 = (max_x + min_x)/(max_x - min_x) tanhalffov = tan((fov/2)) s1 = 1/tanhalffov s2 = 1/(tanhalffov * (aspect_ratio)) # To map z to the range [0, 1] use: f1 = far / (far - near) f2 = -(far * near) / (far - near) # Projection matrix K = [ [s1, 0, w1, 0], [0, s2, h1, 0], [0, 0, f1, f2], [0, 0, 1, 0], ] """ K = kwargs.get("K", self.K) if K is not None: if K.shape != (self._N, 4, 4): msg = "Expected K to have shape of (%r, 4, 4)" raise ValueError(msg % (self._N)) else: K = self.compute_projection_matrix( kwargs.get("znear", self.znear), kwargs.get("zfar", self.zfar), kwargs.get("fov", self.fov), kwargs.get("aspect_ratio", self.aspect_ratio), kwargs.get("degrees", self.degrees), ) # Transpose the projection matrix as PyTorch3D transforms use row vectors. transform = Transform3d( matrix=K.transpose(1, 2).contiguous(), device=self.device ) return transform
[docs] def unproject_points( self, xy_depth: torch.Tensor, world_coordinates: bool = True, scaled_depth_input: bool = False, **kwargs, ) -> torch.Tensor: """>! FoV cameras further allow for passing depth in world units (`scaled_depth_input=False`) or in the [0, 1]-normalized units (`scaled_depth_input=True`) Args: scaled_depth_input: If `True`, assumes the input depth is in the [0, 1]-normalized units. If `False` the input depth is in the world units. """ # obtain the relevant transformation to ndc if world_coordinates: to_ndc_transform = self.get_full_projection_transform() else: to_ndc_transform = self.get_projection_transform() if scaled_depth_input: # the input is scaled depth, so we don't have to do anything xy_sdepth = xy_depth else: # parse out important values from the projection matrix K_matrix = self.get_projection_transform(**kwargs.copy()).get_matrix() # parse out f1, f2 from K_matrix unsqueeze_shape = [1] * xy_depth.dim() unsqueeze_shape[0] = K_matrix.shape[0] f1 = K_matrix[:, 2, 2].reshape(unsqueeze_shape) f2 = K_matrix[:, 3, 2].reshape(unsqueeze_shape) # get the scaled depth sdepth = (f1 * xy_depth[..., 2:3] + f2) / xy_depth[..., 2:3] # concatenate xy + scaled depth xy_sdepth = torch.cat((xy_depth[..., 0:2], sdepth), dim=-1) # unproject with inverse of the projection unprojection_transform = to_ndc_transform.inverse() return unprojection_transform.transform_points(xy_sdepth)
[docs] def is_perspective(self): return True
[docs] def in_ndc(self): return True
[docs] def OpenGLOrthographicCameras( znear: _BatchFloatType = 1.0, zfar: _BatchFloatType = 100.0, top: _BatchFloatType = 1.0, bottom: _BatchFloatType = -1.0, left: _BatchFloatType = -1.0, right: _BatchFloatType = 1.0, scale_xyz=((1.0, 1.0, 1.0),), # (1, 3) R: torch.Tensor = _R, T: torch.Tensor = _T, device: Device = "cpu", ) -> "FoVOrthographicCameras": """ OpenGLOrthographicCameras has been DEPRECATED. Use FoVOrthographicCameras instead. Preserving OpenGLOrthographicCameras for backward compatibility. """ warnings.warn( """OpenGLOrthographicCameras is deprecated, Use FoVOrthographicCameras instead. OpenGLOrthographicCameras will be removed in future releases.""", PendingDeprecationWarning, ) return FoVOrthographicCameras( znear=znear, zfar=zfar, max_y=top, min_y=bottom, max_x=right, min_x=left, scale_xyz=scale_xyz, R=R, T=T, device=device, )
[docs] class FoVOrthographicCameras(CamerasBase): """ A class which stores a batch of parameters to generate a batch of projection matrices by specifying the field of view. The definitions of the parameters follow the OpenGL orthographic camera. """ # For __getitem__ _FIELDS = ( "K", "znear", "zfar", "R", "T", "max_y", "min_y", "max_x", "min_x", "scale_xyz", )
[docs] def __init__( self, znear: _BatchFloatType = 1.0, zfar: _BatchFloatType = 100.0, max_y: _BatchFloatType = 1.0, min_y: _BatchFloatType = -1.0, max_x: _BatchFloatType = 1.0, min_x: _BatchFloatType = -1.0, scale_xyz=((1.0, 1.0, 1.0),), # (1, 3) R: torch.Tensor = _R, T: torch.Tensor = _T, K: Optional[torch.Tensor] = None, device: Device = "cpu", ): """ Args: znear: near clipping plane of the view frustrum. zfar: far clipping plane of the view frustrum. max_y: maximum y coordinate of the frustrum. min_y: minimum y coordinate of the frustrum. max_x: maximum x coordinate of the frustrum. min_x: minimum x coordinate of the frustrum scale_xyz: scale factors for each axis of shape (N, 3). R: Rotation matrix of shape (N, 3, 3). T: Translation of shape (N, 3). K: (optional) A calibration matrix of shape (N, 4, 4) If provided, don't need znear, zfar, max_y, min_y, max_x, min_x, scale_xyz device: torch.device or string. Only need to set min_x, max_x, min_y, max_y for viewing frustrums which are non symmetric about the origin. """ # The initializer formats all inputs to torch tensors and broadcasts # all the inputs to have the same batch dimension where necessary. super().__init__( device=device, znear=znear, zfar=zfar, max_y=max_y, min_y=min_y, max_x=max_x, min_x=min_x, scale_xyz=scale_xyz, R=R, T=T, K=K, )
[docs] def compute_projection_matrix( self, znear, zfar, max_x, min_x, max_y, min_y, scale_xyz ) -> torch.Tensor: """ Compute the calibration matrix K of shape (N, 4, 4) Args: znear: near clipping plane of the view frustrum. zfar: far clipping plane of the view frustrum. max_x: maximum x coordinate of the frustrum. min_x: minimum x coordinate of the frustrum max_y: maximum y coordinate of the frustrum. min_y: minimum y coordinate of the frustrum. scale_xyz: scale factors for each axis of shape (N, 3). """ K = torch.zeros((self._N, 4, 4), dtype=torch.float32, device=self.device) ones = torch.ones((self._N), dtype=torch.float32, device=self.device) # NOTE: OpenGL flips handedness of coordinate system between camera # space and NDC space so z sign is -ve. In PyTorch3D we maintain a # right handed coordinate system throughout. z_sign = +1.0 K[:, 0, 0] = (2.0 / (max_x - min_x)) * scale_xyz[:, 0] K[:, 1, 1] = (2.0 / (max_y - min_y)) * scale_xyz[:, 1] K[:, 0, 3] = -(max_x + min_x) / (max_x - min_x) K[:, 1, 3] = -(max_y + min_y) / (max_y - min_y) K[:, 3, 3] = ones # NOTE: This maps the z coordinate to the range [0, 1] and replaces the # the OpenGL z normalization to [-1, 1] K[:, 2, 2] = z_sign * (1.0 / (zfar - znear)) * scale_xyz[:, 2] K[:, 2, 3] = -znear / (zfar - znear) return K
[docs] def get_projection_transform(self, **kwargs) -> Transform3d: """ Calculate the orthographic projection matrix. Use column major order. Args: **kwargs: parameters for the projection can be passed in to override the default values set in __init__. Return: a Transform3d object which represents a batch of projection matrices of shape (N, 4, 4) .. code-block:: python scale_x = 2 / (max_x - min_x) scale_y = 2 / (max_y - min_y) scale_z = 2 / (far-near) mid_x = (max_x + min_x) / (max_x - min_x) mix_y = (max_y + min_y) / (max_y - min_y) mid_z = (far + near) / (far - near) K = [ [scale_x, 0, 0, -mid_x], [0, scale_y, 0, -mix_y], [0, 0, -scale_z, -mid_z], [0, 0, 0, 1], ] """ K = kwargs.get("K", self.K) if K is not None: if K.shape != (self._N, 4, 4): msg = "Expected K to have shape of (%r, 4, 4)" raise ValueError(msg % (self._N)) else: K = self.compute_projection_matrix( kwargs.get("znear", self.znear), kwargs.get("zfar", self.zfar), kwargs.get("max_x", self.max_x), kwargs.get("min_x", self.min_x), kwargs.get("max_y", self.max_y), kwargs.get("min_y", self.min_y), kwargs.get("scale_xyz", self.scale_xyz), ) transform = Transform3d( matrix=K.transpose(1, 2).contiguous(), device=self.device ) return transform
[docs] def unproject_points( self, xy_depth: torch.Tensor, world_coordinates: bool = True, scaled_depth_input: bool = False, **kwargs, ) -> torch.Tensor: """>! FoV cameras further allow for passing depth in world units (`scaled_depth_input=False`) or in the [0, 1]-normalized units (`scaled_depth_input=True`) Args: scaled_depth_input: If `True`, assumes the input depth is in the [0, 1]-normalized units. If `False` the input depth is in the world units. """ if world_coordinates: to_ndc_transform = self.get_full_projection_transform(**kwargs.copy()) else: to_ndc_transform = self.get_projection_transform(**kwargs.copy()) if scaled_depth_input: # the input depth is already scaled xy_sdepth = xy_depth else: # we have to obtain the scaled depth first K = self.get_projection_transform(**kwargs).get_matrix() unsqueeze_shape = [1] * K.dim() unsqueeze_shape[0] = K.shape[0] mid_z = K[:, 3, 2].reshape(unsqueeze_shape) scale_z = K[:, 2, 2].reshape(unsqueeze_shape) scaled_depth = scale_z * xy_depth[..., 2:3] + mid_z # cat xy and scaled depth xy_sdepth = torch.cat((xy_depth[..., :2], scaled_depth), dim=-1) # finally invert the transform unprojection_transform = to_ndc_transform.inverse() return unprojection_transform.transform_points(xy_sdepth)
[docs] def is_perspective(self): return False
[docs] def in_ndc(self): return True
############################################################ # MultiView Camera Classes # ############################################################ """ Note that the MultiView Cameras accept parameters in NDC space. """
[docs] def SfMPerspectiveCameras( focal_length: _FocalLengthType = 1.0, principal_point=((0.0, 0.0),), R: torch.Tensor = _R, T: torch.Tensor = _T, device: Device = "cpu", ) -> "PerspectiveCameras": """ SfMPerspectiveCameras has been DEPRECATED. Use PerspectiveCameras instead. Preserving SfMPerspectiveCameras for backward compatibility. """ warnings.warn( """SfMPerspectiveCameras is deprecated, Use PerspectiveCameras instead. SfMPerspectiveCameras will be removed in future releases.""", PendingDeprecationWarning, ) return PerspectiveCameras( focal_length=focal_length, principal_point=principal_point, R=R, T=T, device=device, )
[docs] class PerspectiveCameras(CamerasBase): """ A class which stores a batch of parameters to generate a batch of transformation matrices using the multi-view geometry convention for perspective camera. Parameters for this camera are specified in NDC if `in_ndc` is set to True. If parameters are specified in screen space, `in_ndc` must be set to False. """ # For __getitem__ _FIELDS = ( "K", "R", "T", "focal_length", "principal_point", "_in_ndc", # arg is in_ndc but attribute set as _in_ndc "image_size", ) _SHARED_FIELDS = ("_in_ndc",)
[docs] def __init__( self, focal_length: _FocalLengthType = 1.0, principal_point=((0.0, 0.0),), R: torch.Tensor = _R, T: torch.Tensor = _T, K: Optional[torch.Tensor] = None, device: Device = "cpu", in_ndc: bool = True, image_size: Optional[Union[List, Tuple, torch.Tensor]] = None, ) -> None: """ Args: focal_length: Focal length of the camera in world units. A tensor of shape (N, 1) or (N, 2) for square and non-square pixels respectively. principal_point: xy coordinates of the center of the principal point of the camera in pixels. A tensor of shape (N, 2). in_ndc: True if camera parameters are specified in NDC. If camera parameters are in screen space, it must be set to False. R: Rotation matrix of shape (N, 3, 3) T: Translation matrix of shape (N, 3) K: (optional) A calibration matrix of shape (N, 4, 4) If provided, don't need focal_length, principal_point image_size: (height, width) of image size. A tensor of shape (N, 2) or a list/tuple. Required for screen cameras. device: torch.device or string """ # The initializer formats all inputs to torch tensors and broadcasts # all the inputs to have the same batch dimension where necessary. kwargs = {"image_size": image_size} if image_size is not None else {} super().__init__( device=device, focal_length=focal_length, principal_point=principal_point, R=R, T=T, K=K, _in_ndc=in_ndc, **kwargs, # pyre-ignore ) if image_size is not None: if (self.image_size < 1).any(): # pyre-ignore raise ValueError("Image_size provided has invalid values") else: self.image_size = None # When focal length is provided as one value, expand to # create (N, 2) shape tensor if self.focal_length.ndim == 1: # (N,) self.focal_length = self.focal_length[:, None] # (N, 1) self.focal_length = self.focal_length.expand(-1, 2) # (N, 2)
[docs] def get_projection_transform(self, **kwargs) -> Transform3d: """ Calculate the projection matrix using the multi-view geometry convention. Args: **kwargs: parameters for the projection can be passed in as keyword arguments to override the default values set in __init__. Returns: A `Transform3d` object with a batch of `N` projection transforms. .. code-block:: python fx = focal_length[:, 0] fy = focal_length[:, 1] px = principal_point[:, 0] py = principal_point[:, 1] K = [ [fx, 0, px, 0], [0, fy, py, 0], [0, 0, 0, 1], [0, 0, 1, 0], ] """ K = kwargs.get("K", self.K) if K is not None: if K.shape != (self._N, 4, 4): msg = "Expected K to have shape of (%r, 4, 4)" raise ValueError(msg % (self._N)) else: K = _get_sfm_calibration_matrix( self._N, self.device, kwargs.get("focal_length", self.focal_length), kwargs.get("principal_point", self.principal_point), orthographic=False, ) transform = Transform3d( matrix=K.transpose(1, 2).contiguous(), device=self.device ) return transform
[docs] def unproject_points( self, xy_depth: torch.Tensor, world_coordinates: bool = True, from_ndc: bool = False, **kwargs, ) -> torch.Tensor: """ Args: from_ndc: If `False` (default), assumes xy part of input is in NDC space if self.in_ndc(), otherwise in screen space. If `True`, assumes xy is in NDC space even if the camera is defined in screen space. """ if world_coordinates: to_camera_transform = self.get_full_projection_transform(**kwargs) else: to_camera_transform = self.get_projection_transform(**kwargs) if from_ndc: to_camera_transform = to_camera_transform.compose( self.get_ndc_camera_transform() ) unprojection_transform = to_camera_transform.inverse() xy_inv_depth = torch.cat( (xy_depth[..., :2], 1.0 / xy_depth[..., 2:3]), dim=-1 # type: ignore ) return unprojection_transform.transform_points(xy_inv_depth)
[docs] def get_principal_point(self, **kwargs) -> torch.Tensor: """ Return the camera's principal point Args: **kwargs: parameters for the camera extrinsics can be passed in as keyword arguments to override the default values set in __init__. """ proj_mat = self.get_projection_transform(**kwargs).get_matrix() return proj_mat[:, 2, :2]
[docs] def get_ndc_camera_transform(self, **kwargs) -> Transform3d: """ Returns the transform from camera projection space (screen or NDC) to NDC space. If the camera is defined already in NDC space, the transform is identity. For cameras defined in screen space, we adjust the principal point computation which is defined in the image space (commonly) and scale the points to NDC space. This transform leaves the depth unchanged. Important: This transforms assumes PyTorch3D conventions for the input points, i.e. +X left, +Y up. """ if self.in_ndc(): ndc_transform = Transform3d(device=self.device, dtype=torch.float32) else: # when cameras are defined in screen/image space, the principal point is # provided in the (+X right, +Y down), aka image, coordinate system. # Since input points are defined in the PyTorch3D system (+X left, +Y up), # we need to adjust for the principal point transform. pr_point_fix = torch.zeros( (self._N, 4, 4), device=self.device, dtype=torch.float32 ) pr_point_fix[:, 0, 0] = 1.0 pr_point_fix[:, 1, 1] = 1.0 pr_point_fix[:, 2, 2] = 1.0 pr_point_fix[:, 3, 3] = 1.0 pr_point_fix[:, :2, 3] = -2.0 * self.get_principal_point(**kwargs) pr_point_fix_transform = Transform3d( matrix=pr_point_fix.transpose(1, 2).contiguous(), device=self.device ) image_size = kwargs.get("image_size", self.get_image_size()) screen_to_ndc_transform = get_screen_to_ndc_transform( self, with_xyflip=False, image_size=image_size ) ndc_transform = pr_point_fix_transform.compose(screen_to_ndc_transform) return ndc_transform
[docs] def is_perspective(self): return True
[docs] def in_ndc(self): return self._in_ndc
[docs] def SfMOrthographicCameras( focal_length: _FocalLengthType = 1.0, principal_point=((0.0, 0.0),), R: torch.Tensor = _R, T: torch.Tensor = _T, device: Device = "cpu", ) -> "OrthographicCameras": """ SfMOrthographicCameras has been DEPRECATED. Use OrthographicCameras instead. Preserving SfMOrthographicCameras for backward compatibility. """ warnings.warn( """SfMOrthographicCameras is deprecated, Use OrthographicCameras instead. SfMOrthographicCameras will be removed in future releases.""", PendingDeprecationWarning, ) return OrthographicCameras( focal_length=focal_length, principal_point=principal_point, R=R, T=T, device=device, )
[docs] class OrthographicCameras(CamerasBase): """ A class which stores a batch of parameters to generate a batch of transformation matrices using the multi-view geometry convention for orthographic camera. Parameters for this camera are specified in NDC if `in_ndc` is set to True. If parameters are specified in screen space, `in_ndc` must be set to False. """ # For __getitem__ _FIELDS = ( "K", "R", "T", "focal_length", "principal_point", "_in_ndc", "image_size", ) _SHARED_FIELDS = ("_in_ndc",)
[docs] def __init__( self, focal_length: _FocalLengthType = 1.0, principal_point=((0.0, 0.0),), R: torch.Tensor = _R, T: torch.Tensor = _T, K: Optional[torch.Tensor] = None, device: Device = "cpu", in_ndc: bool = True, image_size: Optional[Union[List, Tuple, torch.Tensor]] = None, ) -> None: """ Args: focal_length: Focal length of the camera in world units. A tensor of shape (N, 1) or (N, 2) for square and non-square pixels respectively. principal_point: xy coordinates of the center of the principal point of the camera in pixels. A tensor of shape (N, 2). in_ndc: True if camera parameters are specified in NDC. If False, then camera parameters are in screen space. R: Rotation matrix of shape (N, 3, 3) T: Translation matrix of shape (N, 3) K: (optional) A calibration matrix of shape (N, 4, 4) If provided, don't need focal_length, principal_point, image_size image_size: (height, width) of image size. A tensor of shape (N, 2) or list/tuple. Required for screen cameras. device: torch.device or string """ # The initializer formats all inputs to torch tensors and broadcasts # all the inputs to have the same batch dimension where necessary. kwargs = {"image_size": image_size} if image_size is not None else {} super().__init__( device=device, focal_length=focal_length, principal_point=principal_point, R=R, T=T, K=K, _in_ndc=in_ndc, **kwargs, # pyre-ignore ) if image_size is not None: if (self.image_size < 1).any(): # pyre-ignore raise ValueError("Image_size provided has invalid values") else: self.image_size = None # When focal length is provided as one value, expand to # create (N, 2) shape tensor if self.focal_length.ndim == 1: # (N,) self.focal_length = self.focal_length[:, None] # (N, 1) self.focal_length = self.focal_length.expand(-1, 2) # (N, 2)
[docs] def get_projection_transform(self, **kwargs) -> Transform3d: """ Calculate the projection matrix using the multi-view geometry convention. Args: **kwargs: parameters for the projection can be passed in as keyword arguments to override the default values set in __init__. Returns: A `Transform3d` object with a batch of `N` projection transforms. .. code-block:: python fx = focal_length[:,0] fy = focal_length[:,1] px = principal_point[:,0] py = principal_point[:,1] K = [ [fx, 0, 0, px], [0, fy, 0, py], [0, 0, 1, 0], [0, 0, 0, 1], ] """ K = kwargs.get("K", self.K) if K is not None: if K.shape != (self._N, 4, 4): msg = "Expected K to have shape of (%r, 4, 4)" raise ValueError(msg % (self._N)) else: K = _get_sfm_calibration_matrix( self._N, self.device, kwargs.get("focal_length", self.focal_length), kwargs.get("principal_point", self.principal_point), orthographic=True, ) transform = Transform3d( matrix=K.transpose(1, 2).contiguous(), device=self.device ) return transform
[docs] def unproject_points( self, xy_depth: torch.Tensor, world_coordinates: bool = True, from_ndc: bool = False, **kwargs, ) -> torch.Tensor: """ Args: from_ndc: If `False` (default), assumes xy part of input is in NDC space if self.in_ndc(), otherwise in screen space. If `True`, assumes xy is in NDC space even if the camera is defined in screen space. """ if world_coordinates: to_camera_transform = self.get_full_projection_transform(**kwargs) else: to_camera_transform = self.get_projection_transform(**kwargs) if from_ndc: to_camera_transform = to_camera_transform.compose( self.get_ndc_camera_transform() ) unprojection_transform = to_camera_transform.inverse() return unprojection_transform.transform_points(xy_depth)
[docs] def get_principal_point(self, **kwargs) -> torch.Tensor: """ Return the camera's principal point Args: **kwargs: parameters for the camera extrinsics can be passed in as keyword arguments to override the default values set in __init__. """ proj_mat = self.get_projection_transform(**kwargs).get_matrix() return proj_mat[:, 3, :2]
[docs] def get_ndc_camera_transform(self, **kwargs) -> Transform3d: """ Returns the transform from camera projection space (screen or NDC) to NDC space. If the camera is defined already in NDC space, the transform is identity. For cameras defined in screen space, we adjust the principal point computation which is defined in the image space (commonly) and scale the points to NDC space. Important: This transforms assumes PyTorch3D conventions for the input points, i.e. +X left, +Y up. """ if self.in_ndc(): ndc_transform = Transform3d(device=self.device, dtype=torch.float32) else: # when cameras are defined in screen/image space, the principal point is # provided in the (+X right, +Y down), aka image, coordinate system. # Since input points are defined in the PyTorch3D system (+X left, +Y up), # we need to adjust for the principal point transform. pr_point_fix = torch.zeros( (self._N, 4, 4), device=self.device, dtype=torch.float32 ) pr_point_fix[:, 0, 0] = 1.0 pr_point_fix[:, 1, 1] = 1.0 pr_point_fix[:, 2, 2] = 1.0 pr_point_fix[:, 3, 3] = 1.0 pr_point_fix[:, :2, 3] = -2.0 * self.get_principal_point(**kwargs) pr_point_fix_transform = Transform3d( matrix=pr_point_fix.transpose(1, 2).contiguous(), device=self.device ) image_size = kwargs.get("image_size", self.get_image_size()) screen_to_ndc_transform = get_screen_to_ndc_transform( self, with_xyflip=False, image_size=image_size ) ndc_transform = pr_point_fix_transform.compose(screen_to_ndc_transform) return ndc_transform
[docs] def is_perspective(self): return False
[docs] def in_ndc(self): return self._in_ndc
################################################ # Helper functions for cameras # ################################################ def _get_sfm_calibration_matrix( N: int, device: Device, focal_length, principal_point, orthographic: bool = False, ) -> torch.Tensor: """ Returns a calibration matrix of a perspective/orthographic camera. Args: N: Number of cameras. focal_length: Focal length of the camera. principal_point: xy coordinates of the center of the principal point of the camera in pixels. orthographic: Boolean specifying if the camera is orthographic or not The calibration matrix `K` is set up as follows: .. code-block:: python fx = focal_length[:,0] fy = focal_length[:,1] px = principal_point[:,0] py = principal_point[:,1] for orthographic==True: K = [ [fx, 0, 0, px], [0, fy, 0, py], [0, 0, 1, 0], [0, 0, 0, 1], ] else: K = [ [fx, 0, px, 0], [0, fy, py, 0], [0, 0, 0, 1], [0, 0, 1, 0], ] Returns: A calibration matrix `K` of the SfM-conventioned camera of shape (N, 4, 4). """ if not torch.is_tensor(focal_length): focal_length = torch.tensor(focal_length, device=device) if focal_length.ndim in (0, 1) or focal_length.shape[1] == 1: fx = fy = focal_length else: fx, fy = focal_length.unbind(1) if not torch.is_tensor(principal_point): principal_point = torch.tensor(principal_point, device=device) px, py = principal_point.unbind(1) K = fx.new_zeros(N, 4, 4) K[:, 0, 0] = fx K[:, 1, 1] = fy if orthographic: K[:, 0, 3] = px K[:, 1, 3] = py K[:, 2, 2] = 1.0 K[:, 3, 3] = 1.0 else: K[:, 0, 2] = px K[:, 1, 2] = py K[:, 3, 2] = 1.0 K[:, 2, 3] = 1.0 return K ################################################ # Helper functions for world to view transforms ################################################
[docs] def get_world_to_view_transform( R: torch.Tensor = _R, T: torch.Tensor = _T ) -> Transform3d: """ This function returns a Transform3d representing the transformation matrix to go from world space to view space by applying a rotation and a translation. PyTorch3D uses the same convention as Hartley & Zisserman. I.e., for camera extrinsic parameters R (rotation) and T (translation), we map a 3D point `X_world` in world coordinates to a point `X_cam` in camera coordinates with: `X_cam = X_world R + T` Args: R: (N, 3, 3) matrix representing the rotation. T: (N, 3) matrix representing the translation. Returns: a Transform3d object which represents the composed RT transformation. """ # TODO: also support the case where RT is specified as one matrix # of shape (N, 4, 4). if T.shape[0] != R.shape[0]: msg = "Expected R, T to have the same batch dimension; got %r, %r" raise ValueError(msg % (R.shape[0], T.shape[0])) if T.dim() != 2 or T.shape[1:] != (3,): msg = "Expected T to have shape (N, 3); got %r" raise ValueError(msg % repr(T.shape)) if R.dim() != 3 or R.shape[1:] != (3, 3): msg = "Expected R to have shape (N, 3, 3); got %r" raise ValueError(msg % repr(R.shape)) # Create a Transform3d object T_ = Translate(T, device=T.device) R_ = Rotate(R, device=R.device) return R_.compose(T_)
[docs] def camera_position_from_spherical_angles( distance: float, elevation: float, azimuth: float, degrees: bool = True, device: Device = "cpu", ) -> torch.Tensor: """ Calculate the location of the camera based on the distance away from the target point, the elevation and azimuth angles. Args: distance: distance of the camera from the object. elevation, azimuth: angles. The inputs distance, elevation and azimuth can be one of the following - Python scalar - Torch scalar - Torch tensor of shape (N) or (1) degrees: bool, whether the angles are specified in degrees or radians. device: str or torch.device, device for new tensors to be placed on. The vectors are broadcast against each other so they all have shape (N, 1). Returns: camera_position: (N, 3) xyz location of the camera. """ broadcasted_args = convert_to_tensors_and_broadcast( distance, elevation, azimuth, device=device ) dist, elev, azim = broadcasted_args if degrees: elev = math.pi / 180.0 * elev azim = math.pi / 180.0 * azim x = dist * torch.cos(elev) * torch.sin(azim) y = dist * torch.sin(elev) z = dist * torch.cos(elev) * torch.cos(azim) camera_position = torch.stack([x, y, z], dim=1) if camera_position.dim() == 0: camera_position = camera_position.view(1, -1) # add batch dim. return camera_position.view(-1, 3)
[docs] def look_at_rotation( camera_position, at=((0, 0, 0),), up=((0, 1, 0),), device: Device = "cpu" ) -> torch.Tensor: """ This function takes a vector 'camera_position' which specifies the location of the camera in world coordinates and two vectors `at` and `up` which indicate the position of the object and the up directions of the world coordinate system respectively. The object is assumed to be centered at the origin. The output is a rotation matrix representing the transformation from world coordinates -> view coordinates. Args: camera_position: position of the camera in world coordinates at: position of the object in world coordinates up: vector specifying the up direction in the world coordinate frame. The inputs camera_position, at and up can each be a - 3 element tuple/list - torch tensor of shape (1, 3) - torch tensor of shape (N, 3) The vectors are broadcast against each other so they all have shape (N, 3). Returns: R: (N, 3, 3) batched rotation matrices """ # Format input and broadcast broadcasted_args = convert_to_tensors_and_broadcast( camera_position, at, up, device=device ) camera_position, at, up = broadcasted_args for t, n in zip([camera_position, at, up], ["camera_position", "at", "up"]): if t.shape[-1] != 3: msg = "Expected arg %s to have shape (N, 3); got %r" raise ValueError(msg % (n, t.shape)) z_axis = F.normalize(at - camera_position, eps=1e-5) x_axis = F.normalize(torch.cross(up, z_axis, dim=1), eps=1e-5) y_axis = F.normalize(torch.cross(z_axis, x_axis, dim=1), eps=1e-5) is_close = torch.isclose(x_axis, torch.tensor(0.0), atol=5e-3).all( dim=1, keepdim=True ) if is_close.any(): replacement = F.normalize(torch.cross(y_axis, z_axis, dim=1), eps=1e-5) x_axis = torch.where(is_close, replacement, x_axis) R = torch.cat((x_axis[:, None, :], y_axis[:, None, :], z_axis[:, None, :]), dim=1) return R.transpose(1, 2)
[docs] def look_at_view_transform( dist: _BatchFloatType = 1.0, elev: _BatchFloatType = 0.0, azim: _BatchFloatType = 0.0, degrees: bool = True, eye: Optional[Union[Sequence, torch.Tensor]] = None, at=((0, 0, 0),), # (1, 3) up=((0, 1, 0),), # (1, 3) device: Device = "cpu", ) -> Tuple[torch.Tensor, torch.Tensor]: """ This function returns a rotation and translation matrix to apply the 'Look At' transformation from world -> view coordinates [0]. Args: dist: distance of the camera from the object elev: angle in degrees or radians. This is the angle between the vector from the object to the camera, and the horizontal plane y = 0 (xz-plane). azim: angle in degrees or radians. The vector from the object to the camera is projected onto a horizontal plane y = 0. azim is the angle between the projected vector and a reference vector at (0, 0, 1) on the reference plane (the horizontal plane). dist, elev and azim can be of shape (1), (N). degrees: boolean flag to indicate if the elevation and azimuth angles are specified in degrees or radians. eye: the position of the camera(s) in world coordinates. If eye is not None, it will override the camera position derived from dist, elev, azim. up: the direction of the x axis in the world coordinate system. at: the position of the object(s) in world coordinates. eye, up and at can be of shape (1, 3) or (N, 3). Returns: 2-element tuple containing - **R**: the rotation to apply to the points to align with the camera. - **T**: the translation to apply to the points to align with the camera. References: [0] https://www.scratchapixel.com """ if eye is not None: broadcasted_args = convert_to_tensors_and_broadcast(eye, at, up, device=device) eye, at, up = broadcasted_args C = eye else: broadcasted_args = convert_to_tensors_and_broadcast( dist, elev, azim, at, up, device=device ) dist, elev, azim, at, up = broadcasted_args C = ( camera_position_from_spherical_angles( dist, elev, azim, degrees=degrees, device=device ) + at ) R = look_at_rotation(C, at, up, device=device) T = -torch.bmm(R.transpose(1, 2), C[:, :, None])[:, :, 0] return R, T
[docs] def get_ndc_to_screen_transform( cameras, with_xyflip: bool = False, image_size: Optional[Union[List, Tuple, torch.Tensor]] = None, ) -> Transform3d: """ PyTorch3D NDC to screen conversion. Conversion from PyTorch3D's NDC space (+X left, +Y up) to screen/image space (+X right, +Y down, origin top left). Args: cameras with_xyflip: flips x- and y-axis if set to True. Optional kwargs: image_size: ((height, width),) specifying the height, width of the image. If not provided, it reads it from cameras. We represent the NDC to screen conversion as a Transform3d with projection matrix K = [ [s, 0, 0, cx], [0, s, 0, cy], [0, 0, 1, 0], [0, 0, 0, 1], ] """ # We require the image size, which is necessary for the transform if image_size is None: msg = "For NDC to screen conversion, image_size=(height, width) needs to be specified." raise ValueError(msg) K = torch.zeros((cameras._N, 4, 4), device=cameras.device, dtype=torch.float32) if not torch.is_tensor(image_size): image_size = torch.tensor(image_size, device=cameras.device) # pyre-fixme[16]: Item `List` of `Union[List[typing.Any], Tensor, Tuple[Any, # ...]]` has no attribute `view`. image_size = image_size.view(-1, 2) # of shape (1 or B)x2 height, width = image_size.unbind(1) # For non square images, we scale the points such that smallest side # has range [-1, 1] and the largest side has range [-u, u], with u > 1. # This convention is consistent with the PyTorch3D renderer scale = (image_size.min(dim=1).values - 0.0) / 2.0 K[:, 0, 0] = scale K[:, 1, 1] = scale K[:, 0, 3] = -1.0 * (width - 0.0) / 2.0 K[:, 1, 3] = -1.0 * (height - 0.0) / 2.0 K[:, 2, 2] = 1.0 K[:, 3, 3] = 1.0 # Transpose the projection matrix as PyTorch3D transforms use row vectors. transform = Transform3d( matrix=K.transpose(1, 2).contiguous(), device=cameras.device ) if with_xyflip: # flip x, y axis xyflip = torch.eye(4, device=cameras.device, dtype=torch.float32) xyflip[0, 0] = -1.0 xyflip[1, 1] = -1.0 xyflip = xyflip.view(1, 4, 4).expand(cameras._N, -1, -1) xyflip_transform = Transform3d( matrix=xyflip.transpose(1, 2).contiguous(), device=cameras.device ) transform = transform.compose(xyflip_transform) return transform
[docs] def get_screen_to_ndc_transform( cameras, with_xyflip: bool = False, image_size: Optional[Union[List, Tuple, torch.Tensor]] = None, ) -> Transform3d: """ Screen to PyTorch3D NDC conversion. Conversion from screen/image space (+X right, +Y down, origin top left) to PyTorch3D's NDC space (+X left, +Y up). Args: cameras with_xyflip: flips x- and y-axis if set to True. Optional kwargs: image_size: ((height, width),) specifying the height, width of the image. If not provided, it reads it from cameras. We represent the screen to NDC conversion as a Transform3d with projection matrix K = [ [1/s, 0, 0, cx/s], [ 0, 1/s, 0, cy/s], [ 0, 0, 1, 0], [ 0, 0, 0, 1], ] """ transform = get_ndc_to_screen_transform( cameras, with_xyflip=with_xyflip, image_size=image_size, ).inverse() return transform
[docs] def try_get_projection_transform( cameras: CamerasBase, cameras_kwargs: Dict[str, Any] ) -> Optional[Transform3d]: """ Try block to get projection transform from cameras and cameras_kwargs. Args: cameras: cameras instance, can be linear cameras or nonliear cameras cameras_kwargs: camera parameters to be passed to cameras Returns: If the camera implemented projection_transform, return the projection transform; Otherwise, return None """ transform = None try: transform = cameras.get_projection_transform(**cameras_kwargs) except NotImplementedError: pass return transform