# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
# pyre-unsafe
"""
This file contains classes that implement Voxel grids, both in their full resolution
as in the factorized form. There are two factorized forms implemented, Tensor rank decomposition
or CANDECOMP/PARAFAC (here CP) and Vector Matrix (here VM) factorization from the
TensoRF (https://arxiv.org/abs/2203.09517) paper.
In addition, the module VoxelGridModule implements a trainable instance of one of
these classes.
"""
import logging
import warnings
from collections.abc import Mapping
from dataclasses import dataclass, field
from distutils.version import LooseVersion
from typing import Any, Callable, ClassVar, Dict, Iterator, List, Optional, Tuple, Type
import torch
from omegaconf import DictConfig
from pytorch3d.implicitron.tools.config import (
Configurable,
registry,
ReplaceableBase,
run_auto_creation,
)
from pytorch3d.structures.volumes import VolumeLocator
from .utils import interpolate_line, interpolate_plane, interpolate_volume
logger = logging.getLogger(__name__)
[docs]
@dataclass
class VoxelGridValuesBase:
pass
[docs]
class VoxelGridBase(ReplaceableBase, torch.nn.Module):
"""
Base class for all the voxel grid variants whith added trilinear interpolation between
voxels (for example if voxel (0.333, 1, 3) is queried that would return the result
2/3*voxel[0, 1, 3] + 1/3*voxel[1, 1, 3])
Internally voxel grids are indexed by (features, x, y, z). If queried the point is not
inside the voxel grid the vector that will be returned is determined by padding.
Members:
align_corners: parameter used in torch.functional.grid_sample. For details go to
https://pytorch.org/docs/stable/generated/torch.nn.functional.grid_sample.html by
default is True
padding: padding mode for outside grid values 'zeros' | 'border' | 'reflection'.
Default is 'zeros'
mode: interpolation mode to calculate output values :
'bilinear' | 'nearest' | 'bicubic' | 'trilinear'.
Default: 'bilinear' Note: mode='bicubic' supports only FullResolutionVoxelGrid.
When mode='bilinear' and the input is 5-D, the interpolation mode used internally
will actually be trilinear.
n_features: number of dimensions of base feature vector. Determines how many features
the grid returns.
resolution_changes: a dictionary, where keys are change epochs and values are
3-tuples containing x, y, z grid sizes corresponding to each axis to each epoch
"""
align_corners: bool = True
padding: str = "zeros"
mode: str = "bilinear"
n_features: int = 1
# return the line below once we drop OmegaConf 2.1 support
# resolution_changes: Dict[int, List[int]] = field(
resolution_changes: Dict[int, Any] = field(
default_factory=lambda: {0: [128, 128, 128]}
)
def __post_init__(self):
if 0 not in self.resolution_changes:
raise ValueError("There has to be key `0` in `resolution_changes`.")
[docs]
def evaluate_world(
self,
points: torch.Tensor,
grid_values: VoxelGridValuesBase,
locator: VolumeLocator,
) -> torch.Tensor:
"""
Evaluates the voxel grid at points in the world coordinate frame.
The interpolation type is determined by the `mode` member.
Arguments:
points (torch.Tensor): tensor of points that you want to query
of a form (n_grids, ..., 3)
grid_values: an object of type Class.values_type which has tensors as
members which have shapes derived from the get_shapes() method
locator: a VolumeLocator object
Returns:
torch.Tensor: shape (n_grids, ..., n_features)
"""
points_local = locator.world_to_local_coords(points)
return self.evaluate_local(points_local, grid_values)
[docs]
def evaluate_local(
self, points: torch.Tensor, grid_values: VoxelGridValuesBase
) -> torch.Tensor:
"""
Evaluates the voxel grid at points in the local coordinate frame,
The interpolation type is determined by the `mode` member.
Arguments:
points (torch.Tensor): tensor of points that you want to query
of a form (n_grids, ..., 3), in a normalized form (coordinates are in [-1, 1])
grid_values: an object of type VMFactorizedVoxelGrid.values_type which has tensors
as members which have shapes derived from the get_shapes() method
Returns:
torch.Tensor: shape (n_grids, ..., n_features)
"""
raise NotImplementedError()
[docs]
def get_shapes(self, epoch: int) -> Dict[str, Tuple]:
"""
Using parameters from the __init__ method, this method returns the
shapes of individual tensors needed to run the evaluate method.
Args:
epoch: If the shape varies during training, which training epoch's shape to return.
Returns:
a dictionary of needed shapes. To use the evaluate_local and evaluate_world methods
replace the shapes in the dictionary with tensors of those shapes and add the
first 'batch' dimension. If the required shape is (a, b) and you want to
have g grids then the tensor that replaces the shape should have the
shape (g, a, b).
"""
raise NotImplementedError()
[docs]
def get_resolution(self, epoch: int) -> List[int]:
"""
Returns the resolution which the grid should have at specific epoch
Args:
epoch which to use in the resolution calculation
Returns:
resolution at specific epoch
"""
last_change = 0
for change_epoch in self.resolution_changes:
if change_epoch <= epoch:
last_change = max(last_change, change_epoch)
return self.resolution_changes[last_change]
[docs]
@staticmethod
def get_output_dim(args: DictConfig) -> int:
"""
Given all the arguments of the grid's __init__, returns output's last dimension length.
In particular, if self.evaluate_world or self.evaluate_local
are called with `points` of shape (n_grids, n_points, 3),
their output will be of shape
(n_grids, n_points, grid.get_output_dim()).
Args:
args: DictConfig which would be used to initialize the object
Returns:
output's last dimension length
"""
return args["n_features"]
[docs]
def change_resolution(
self,
grid_values: VoxelGridValuesBase,
*,
epoch: Optional[int] = None,
grid_values_with_wanted_resolution: Optional[VoxelGridValuesBase] = None,
mode: str = "linear",
align_corners: bool = True,
antialias: bool = False,
) -> Tuple[VoxelGridValuesBase, bool]:
"""
Changes resolution of tensors in `grid_values` to match the
`grid_values_with_wanted_resolution` or resolution on wanted epoch.
Args:
epoch: current training epoch, used to see if the grid needs regridding
grid_values: instance of self.values_type which contains
the voxel grid which will be interpolated to create the new grid
epoch: epoch which is used to get the resolution of the new
`grid_values` using `self.resolution_changes`.
grid_values_with_wanted_resolution: `VoxelGridValuesBase` to whose resolution
to interpolate grid_values
align_corners: as for torch.nn.functional.interpolate
mode: as for torch.nn.functional.interpolate
'nearest' | 'bicubic' | 'linear' | 'area' | 'nearest-exact'.
Default: 'linear'
antialias: as for torch.nn.functional.interpolate.
Using anti-alias option
together with align_corners=False and mode='bicubic', interpolation
result would match Pillow result for downsampling operation.
Supported mode: 'bicubic'
Returns:
tuple of
- new voxel grid_values of desired resolution, of type self.values_type
- True if regridding has happened.
"""
if (epoch is None) == (grid_values_with_wanted_resolution is None):
raise ValueError(
"Exactly one of `epoch` or "
"`grid_values_with_wanted_resolution` has to be defined."
)
if mode not in ("nearest", "bicubic", "linear", "area", "nearest-exact"):
raise ValueError(
"`mode` should be one of the following 'nearest'"
+ "| 'bicubic' | 'linear' | 'area' | 'nearest-exact'"
)
interpolate_has_antialias = LooseVersion(torch.__version__) >= "1.11"
if antialias and not interpolate_has_antialias:
warnings.warn("Antialiased interpolation requires PyTorch 1.11+; ignoring")
interp_kwargs = {"antialias": antialias} if interpolate_has_antialias else {}
def change_individual_resolution(tensor, wanted_resolution):
if mode == "linear":
n_dim = len(wanted_resolution)
new_mode = ("linear", "bilinear", "trilinear")[n_dim - 1]
else:
new_mode = mode
return torch.nn.functional.interpolate(
input=tensor,
size=wanted_resolution,
mode=new_mode,
align_corners=align_corners,
recompute_scale_factor=False,
**interp_kwargs,
)
if epoch is not None:
if epoch not in self.resolution_changes:
return grid_values, False
wanted_shapes = self.get_shapes(epoch=epoch)
params = {
name: change_individual_resolution(
getattr(grid_values, name), shape[1:]
)
for name, shape in wanted_shapes.items()
}
res = self.get_resolution(epoch)
logger.info(f"Changed grid resolutiuon at epoch {epoch} to {res}")
else:
params = {
name: (
change_individual_resolution(
getattr(grid_values, name), tensor.shape[2:]
)
if tensor is not None
else None
)
for name, tensor in vars(grid_values_with_wanted_resolution).items()
}
# pyre-fixme[29]: `Union[Tensor, Module]` is not a function.
return self.values_type(**params), True
[docs]
def get_resolution_change_epochs(self) -> Tuple[int, ...]:
"""
Returns epochs at which this grid should change epochs.
"""
return tuple(self.resolution_changes.keys())
[docs]
def get_align_corners(self) -> bool:
"""
Returns True if voxel grid uses align_corners=True
"""
return self.align_corners
[docs]
def crop_world(
self,
min_point_world: torch.Tensor,
max_point_world: torch.Tensor,
grid_values: VoxelGridValuesBase,
volume_locator: VolumeLocator,
) -> VoxelGridValuesBase:
"""
Crops the voxel grid based on minimum and maximum occupied point in
world coordinates. After cropping all 8 corner points are preserved in
the voxel grid. This is achieved by preserving all the voxels needed to
calculate the point.
+--------B
/ /|
/ / |
+--------+ | <==== Bounding box represented by points A and B:
| | | - B has x, y and z coordinates bigger or equal
| | + to all other points of the object
| | / - A has x, y and z coordinates smaller or equal
| |/ to all other points of the object
A--------+
Args:
min_point_world: torch.Tensor of shape (3,). Has x, y and z coordinates
smaller or equal to all other occupied points. Point A from the
picture above.
max_point_world: torch.Tensor of shape (3,). Has x, y and z coordinates
bigger or equal to all other occupied points. Point B from the
picture above.
grid_values: instance of self.values_type which contains
the voxel grid which will be cropped to create the new grid
volume_locator: VolumeLocator object used to convert world to local
cordinates
Returns:
instance of self.values_type which has volume cropped to desired size.
"""
min_point_local = volume_locator.world_to_local_coords(min_point_world[None])[0]
max_point_local = volume_locator.world_to_local_coords(max_point_world[None])[0]
return self.crop_local(min_point_local, max_point_local, grid_values)
[docs]
def crop_local(
self,
min_point_local: torch.Tensor,
max_point_local: torch.Tensor,
grid_values: VoxelGridValuesBase,
) -> VoxelGridValuesBase:
"""
Crops the voxel grid based on minimum and maximum occupied point in local
coordinates. After cropping both min and max point are preserved in the voxel
grid. This is achieved by preserving all the voxels needed to calculate the point.
+--------B
/ /|
/ / |
+--------+ | <==== Bounding box represented by points A and B:
| | | - B has x, y and z coordinates bigger or equal
| | + to all other points of the object
| | / - A has x, y and z coordinates smaller or equal
| |/ to all other points of the object
A--------+
Args:
min_point_local: torch.Tensor of shape (3,). Has x, y and z coordinates
smaller or equal to all other occupied points. Point A from the
picture above. All elements in [-1, 1].
max_point_local: torch.Tensor of shape (3,). Has x, y and z coordinates
bigger or equal to all other occupied points. Point B from the
picture above. All elements in [-1, 1].
grid_values: instance of self.values_type which contains
the voxel grid which will be cropped to create the new grid
Returns:
instance of self.values_type which has volume cropped to desired size.
"""
raise NotImplementedError()
[docs]
@dataclass
class FullResolutionVoxelGridValues(VoxelGridValuesBase):
voxel_grid: torch.Tensor
[docs]
@registry.register
class FullResolutionVoxelGrid(VoxelGridBase):
"""
Full resolution voxel grid equivalent to 4D tensor where shape is
(features, width, height, depth) with linear interpolation between voxels.
"""
# the type of grid_values argument needed to run evaluate_local()
values_type: ClassVar[Type[VoxelGridValuesBase]] = FullResolutionVoxelGridValues
# pyre-fixme[14]: `evaluate_local` overrides method defined in `VoxelGridBase`
# inconsistently.
[docs]
def evaluate_local(
self, points: torch.Tensor, grid_values: FullResolutionVoxelGridValues
) -> torch.Tensor:
"""
Evaluates the voxel grid at points in the local coordinate frame,
The interpolation type is determined by the `mode` member.
Arguments:
points (torch.Tensor): tensor of points that you want to query
of a form (..., 3), in a normalized form (coordinates are in [-1, 1])
grid_values: an object of type values_type which has tensors as
members which have shapes derived from the get_shapes() method
Returns:
torch.Tensor: shape (n_grids, ..., n_features)
"""
# (n_grids, n_points_total, n_features) from (n_grids, ..., n_features)
recorded_shape = points.shape
points = points.view(points.shape[0], -1, points.shape[-1])
interpolated = interpolate_volume(
points,
grid_values.voxel_grid,
align_corners=self.align_corners,
padding_mode=self.padding,
mode=self.mode,
)
return interpolated.view(*recorded_shape[:-1], -1)
[docs]
def get_shapes(self, epoch: int) -> Dict[str, Tuple]:
width, height, depth = self.get_resolution(epoch)
return {"voxel_grid": (self.n_features, width, height, depth)}
# pyre-ignore[14]
[docs]
def crop_local(
self,
min_point_local: torch.Tensor,
max_point_local: torch.Tensor,
grid_values: FullResolutionVoxelGridValues,
) -> FullResolutionVoxelGridValues:
assert torch.all(min_point_local < max_point_local)
min_point_local = torch.clamp(min_point_local, -1, 1)
max_point_local = torch.clamp(max_point_local, -1, 1)
_, _, width, height, depth = grid_values.voxel_grid.shape
resolution = grid_values.voxel_grid.new_tensor([width, height, depth])
min_point_local01 = (min_point_local + 1) / 2
max_point_local01 = (max_point_local + 1) / 2
if self.align_corners:
minx, miny, minz = torch.floor(min_point_local01 * (resolution - 1)).long()
maxx, maxy, maxz = torch.ceil(max_point_local01 * (resolution - 1)).long()
else:
minx, miny, minz = torch.floor(min_point_local01 * resolution - 0.5).long()
maxx, maxy, maxz = torch.ceil(max_point_local01 * resolution - 0.5).long()
return FullResolutionVoxelGridValues(
voxel_grid=grid_values.voxel_grid[
:, :, minx : maxx + 1, miny : maxy + 1, minz : maxz + 1
]
)
[docs]
@dataclass
class CPFactorizedVoxelGridValues(VoxelGridValuesBase):
vector_components_x: torch.Tensor
vector_components_y: torch.Tensor
vector_components_z: torch.Tensor
basis_matrix: Optional[torch.Tensor] = None
[docs]
@registry.register
class CPFactorizedVoxelGrid(VoxelGridBase):
"""
Canonical Polyadic (CP/CANDECOMP/PARAFAC) Factorization factorizes the 3d grid into three
vectors (x, y, z). For n_components=n, the 3d grid is a sum of the two outer products
(call it ⊗) of each vector type (x, y, z):
3d_grid = x0 ⊗ y0 ⊗ z0 + x1 ⊗ y1 ⊗ z1 + ... + xn ⊗ yn ⊗ zn
These tensors are passed in a object of CPFactorizedVoxelGridValues (here obj) as
obj.vector_components_x, obj.vector_components_y, obj.vector_components_z. Their shapes are
`(n_components, r)` where `r` is the relevant resolution.
Each element of this sum has an extra dimension, which gets matrix-multiplied by an
appropriate "basis matrix" of shape (n_grids, n_components, n_features). This multiplication
brings us to the desired "n_features" dimensionality. If basis_matrix=False the elements
of different components are summed together to create (n_grids, n_components, 1) tensor.
With some notation abuse, ignoring the interpolation operation, simplifying and denoting
n_features as F, n_components as C and n_grids as G:
3d_grid = (x ⊗ y ⊗ z) @ basis # GWHDC x GCF -> GWHDF
The basis feature vectors are passed as obj.basis_matrix.
Members:
n_components: number of vector triplets, higher number gives better approximation.
basis_matrix: how to transform components. If matrix_reduction=True result
matrix of shape (n_grids, n_points_total, n_components) is batch matrix multiplied
by the basis_matrix of shape (n_grids, n_components, n_features). If
matrix_reduction=False, the result tensor of (n_grids, n_points_total, n_components)
is summed along the rows to get (n_grids, n_points_total, 1), which is then viewed
to return to starting shape (n_grids, ..., 1).
"""
# the type of grid_values argument needed to run evaluate_local()
values_type: ClassVar[Type[VoxelGridValuesBase]] = CPFactorizedVoxelGridValues
n_components: int = 24
basis_matrix: bool = True
# pyre-fixme[14]: `evaluate_local` overrides method defined in `VoxelGridBase`
# inconsistently.
[docs]
def evaluate_local(
self, points: torch.Tensor, grid_values: CPFactorizedVoxelGridValues
) -> torch.Tensor:
def factor(axis):
i = {"x": 0, "y": 1, "z": 2}[axis]
index = points[..., i, None]
vector = getattr(grid_values, "vector_components_" + axis)
return interpolate_line(
index,
vector,
align_corners=self.align_corners,
padding_mode=self.padding,
mode=self.mode,
)
# (n_grids, n_points_total, n_features) from (n_grids, ..., n_features)
recorded_shape = points.shape
points = points.view(points.shape[0], -1, points.shape[-1])
# collect points from all the vectors and multipy them out
mult = factor("x") * factor("y") * factor("z")
# reduce the result from
# (n_grids, n_points_total, n_components) to (n_grids, n_points_total, n_features)
if grid_values.basis_matrix is not None:
# (n_grids, n_points_total, n_features) =
# (n_grids, n_points_total, total_n_components) @
# (n_grids, total_n_components, n_features)
result = torch.bmm(mult, grid_values.basis_matrix)
else:
# (n_grids, n_points_total, 1) from (n_grids, n_points_total, n_features)
result = mult.sum(axis=-1, keepdim=True)
# (n_grids, ..., n_features)
return result.view(*recorded_shape[:-1], -1)
[docs]
def get_shapes(self, epoch: int) -> Dict[str, Tuple[int, int]]:
if self.basis_matrix is False and self.n_features != 1:
raise ValueError("Cannot set basis_matrix=False and n_features to != 1")
width, height, depth = self.get_resolution(epoch=epoch)
shape_dict = {
"vector_components_x": (self.n_components, width),
"vector_components_y": (self.n_components, height),
"vector_components_z": (self.n_components, depth),
}
if self.basis_matrix:
shape_dict["basis_matrix"] = (self.n_components, self.n_features)
return shape_dict
# pyre-ignore[14]
[docs]
def crop_local(
self,
min_point_local: torch.Tensor,
max_point_local: torch.Tensor,
grid_values: CPFactorizedVoxelGridValues,
) -> CPFactorizedVoxelGridValues:
assert torch.all(min_point_local < max_point_local)
min_point_local = torch.clamp(min_point_local, -1, 1)
max_point_local = torch.clamp(max_point_local, -1, 1)
_, _, width = grid_values.vector_components_x.shape
_, _, height = grid_values.vector_components_y.shape
_, _, depth = grid_values.vector_components_z.shape
resolution = grid_values.vector_components_x.new_tensor([width, height, depth])
min_point_local01 = (min_point_local + 1) / 2
max_point_local01 = (max_point_local + 1) / 2
if self.align_corners:
minx, miny, minz = torch.floor(min_point_local01 * (resolution - 1)).long()
maxx, maxy, maxz = torch.ceil(max_point_local01 * (resolution - 1)).long()
else:
minx, miny, minz = torch.floor(min_point_local01 * resolution - 0.5).long()
maxx, maxy, maxz = torch.ceil(max_point_local01 * resolution - 0.5).long()
return CPFactorizedVoxelGridValues(
vector_components_x=grid_values.vector_components_x[:, :, minx : maxx + 1],
vector_components_y=grid_values.vector_components_y[:, :, miny : maxy + 1],
vector_components_z=grid_values.vector_components_z[:, :, minz : maxz + 1],
basis_matrix=grid_values.basis_matrix,
)
[docs]
@dataclass
class VMFactorizedVoxelGridValues(VoxelGridValuesBase):
vector_components_x: torch.Tensor
vector_components_y: torch.Tensor
vector_components_z: torch.Tensor
matrix_components_xy: torch.Tensor
matrix_components_yz: torch.Tensor
matrix_components_xz: torch.Tensor
basis_matrix: Optional[torch.Tensor] = None
[docs]
@registry.register
class VMFactorizedVoxelGrid(VoxelGridBase):
"""
Implementation of Vector-Matrix Factorization of a tensor from
https://arxiv.org/abs/2203.09517.
Vector-Matrix Factorization factorizes the 3d grid into three matrices
(xy, xz, yz) and three vectors (x, y, z). For n_components=1, the 3d grid
is a sum of the outer products (call it ⊗) of each matrix with its
complementary vector:
3d_grid = xy ⊗ z + xz ⊗ y + yz ⊗ x.
These tensors are passed in a VMFactorizedVoxelGridValues object (here obj)
as obj.matrix_components_xy, obj.matrix_components_xy, obj.vector_components_y, etc.
Their shapes are `(n_grids, n_components, r0, r1)` for matrix_components and
(n_grids, n_components, r2)` for vector_componenets. Each of `r0, r1 and r2` coresponds
to one resolution in (width, height and depth).
Each element of this sum has an extra dimension, which gets matrix-multiplied by an
appropriate "basis matrix" of shape (n_grids, n_components, n_features). This multiplication
brings us to the desired "n_features" dimensionality. If basis_matrix=False the elements
of different components are summed together to create (n_grids, n_components, 1) tensor.
With some notation abuse, ignoring the interpolation operation, simplifying and denoting
n_features as F, n_components as C (which can differ for each dimension) and n_grids as G:
3d_grid = concat((xy ⊗ z), (xz ⊗ y).permute(0, 2, 1),
(yz ⊗ x).permute(2, 0, 1)) @ basis_matrix # GWHDC x GCF -> GWHDF
Members:
n_components: total number of matrix vector pairs, this must be divisible by 3. Set
this if you want to have equal representational power in all 3 directions. You
must specify either n_components or distribution_of_components, you cannot
specify both.
distribution_of_components: if you do not want equal representational power in
all 3 directions specify a tuple of numbers of matrix_vector pairs for each
coordinate of a form (n_xy_planes, n_yz_planes, n_xz_planes). You must specify
either n_components or distribution_of_components, you cannot specify both.
basis_matrix: how to transform components. If matrix_reduction=True result
matrix of shape (n_grids, n_points_total, n_components) is batch matrix multiplied
by the basis_matrix of shape (n_grids, n_components, n_features). If
matrix_reduction=False, the result tensor of (n_grids, n_points_total, n_components)
is summed along the rows to get (n_grids, n_points_total, 1), which is then viewed
to return to starting shape (n_grids, ..., 1).
"""
# the type of grid_values argument needed to run evaluate_local()
values_type: ClassVar[Type[VoxelGridValuesBase]] = VMFactorizedVoxelGridValues
n_components: Optional[int] = None
distribution_of_components: Optional[Tuple[int, int, int]] = None
basis_matrix: bool = True
# pyre-fixme[14]: `evaluate_local` overrides method defined in `VoxelGridBase`
# inconsistently.
[docs]
def evaluate_local(
self, points: torch.Tensor, grid_values: VMFactorizedVoxelGridValues
) -> torch.Tensor:
# (n_grids, n_points_total, n_features) from (n_grids, ..., n_features)
recorded_shape = points.shape
points = points.view(points.shape[0], -1, points.shape[-1])
# collect points from matrices and vectors and multiply them
a = interpolate_plane(
points[..., :2],
grid_values.matrix_components_xy,
align_corners=self.align_corners,
padding_mode=self.padding,
mode=self.mode,
) * interpolate_line(
points[..., 2:],
grid_values.vector_components_z,
align_corners=self.align_corners,
padding_mode=self.padding,
mode=self.mode,
)
b = interpolate_plane(
points[..., [0, 2]],
grid_values.matrix_components_xz,
align_corners=self.align_corners,
padding_mode=self.padding,
mode=self.mode,
) * interpolate_line(
points[..., 1:2],
grid_values.vector_components_y,
align_corners=self.align_corners,
padding_mode=self.padding,
mode=self.mode,
)
c = interpolate_plane(
points[..., 1:],
grid_values.matrix_components_yz,
align_corners=self.align_corners,
padding_mode=self.padding,
mode=self.mode,
) * interpolate_line(
points[..., :1],
grid_values.vector_components_x,
align_corners=self.align_corners,
padding_mode=self.padding,
mode=self.mode,
)
# pyre-ignore[28]
feats = torch.cat((a, b, c), axis=-1)
# reduce the result from
# (n_grids, n_points, n_components) to (n_grids, n_points, n_features)
if grid_values.basis_matrix is not None:
# (n_grids, n_points, n_features) =
# (n_grids, n_points, total_n_components) x
# (n_grids, total_n_components, n_features)
result = torch.bmm(feats, grid_values.basis_matrix)
else:
# pyre-ignore[28]
# (n_grids, n_points, 1) from (n_grids, n_points, n_features)
result = feats.sum(axis=-1, keepdim=True)
# (n_grids, ..., n_features)
return result.view(*recorded_shape[:-1], -1)
[docs]
def get_shapes(self, epoch: int) -> Dict[str, Tuple]:
if self.basis_matrix is False and self.n_features != 1:
raise ValueError("Cannot set basis_matrix=False and n_features to != 1")
if self.distribution_of_components is None and self.n_components is None:
raise ValueError(
"You need to provide n_components or distribution_of_components"
)
if (
self.distribution_of_components is not None
and self.n_components is not None
):
raise ValueError(
"You cannot define n_components and distribution_of_components"
)
# pyre-ignore[58]
if self.distribution_of_components is None and self.n_components % 3 != 0:
raise ValueError("n_components must be divisible by 3")
if self.distribution_of_components is None:
calculated_distribution_of_components = [
# pyre-fixme[58]: `//` is not supported for operand types
# `Optional[int]` and `int`.
self.n_components // 3
for _ in range(3)
]
else:
calculated_distribution_of_components = self.distribution_of_components
width, height, depth = self.get_resolution(epoch=epoch)
shape_dict = {
"vector_components_x": (
calculated_distribution_of_components[1],
width,
),
"vector_components_y": (
calculated_distribution_of_components[2],
height,
),
"vector_components_z": (
calculated_distribution_of_components[0],
depth,
),
"matrix_components_xy": (
calculated_distribution_of_components[0],
width,
height,
),
"matrix_components_yz": (
calculated_distribution_of_components[1],
height,
depth,
),
"matrix_components_xz": (
calculated_distribution_of_components[2],
width,
depth,
),
}
if self.basis_matrix:
shape_dict["basis_matrix"] = (
sum(calculated_distribution_of_components),
self.n_features,
)
return shape_dict
# pyre-ignore[14]
[docs]
def crop_local(
self,
min_point_local: torch.Tensor,
max_point_local: torch.Tensor,
grid_values: VMFactorizedVoxelGridValues,
) -> VMFactorizedVoxelGridValues:
assert torch.all(min_point_local < max_point_local)
min_point_local = torch.clamp(min_point_local, -1, 1)
max_point_local = torch.clamp(max_point_local, -1, 1)
_, _, width = grid_values.vector_components_x.shape
_, _, height = grid_values.vector_components_y.shape
_, _, depth = grid_values.vector_components_z.shape
resolution = grid_values.vector_components_x.new_tensor([width, height, depth])
min_point_local01 = (min_point_local + 1) / 2
max_point_local01 = (max_point_local + 1) / 2
if self.align_corners:
minx, miny, minz = torch.floor(min_point_local01 * (resolution - 1)).long()
maxx, maxy, maxz = torch.ceil(max_point_local01 * (resolution - 1)).long()
else:
minx, miny, minz = torch.floor(min_point_local01 * resolution - 0.5).long()
maxx, maxy, maxz = torch.ceil(max_point_local01 * resolution - 0.5).long()
return VMFactorizedVoxelGridValues(
vector_components_x=grid_values.vector_components_x[:, :, minx : maxx + 1],
vector_components_y=grid_values.vector_components_y[:, :, miny : maxy + 1],
vector_components_z=grid_values.vector_components_z[:, :, minz : maxz + 1],
matrix_components_xy=grid_values.matrix_components_xy[
:, :, minx : maxx + 1, miny : maxy + 1
],
matrix_components_yz=grid_values.matrix_components_yz[
:, :, miny : maxy + 1, minz : maxz + 1
],
matrix_components_xz=grid_values.matrix_components_xz[
:, :, minx : maxx + 1, minz : maxz + 1
],
basis_matrix=grid_values.basis_matrix,
)
[docs]
class VoxelGridModule(Configurable, torch.nn.Module):
"""
A wrapper torch.nn.Module for the VoxelGrid classes, which
contains parameters that are needed to train the VoxelGrid classes.
Can contain the parameters for the voxel grid as pytorch parameters
or as registered buffers.
Members:
voxel_grid_class_type: The name of the class to use for voxel_grid,
which must be available in the registry. Default FullResolutionVoxelGrid.
voxel_grid: An instance of `VoxelGridBase`. This is the object which
this class wraps.
extents: 3-tuple of a form (width, height, depth), denotes the size of the grid
in world units.
translation: 3-tuple of float. The center of the volume in world units as (x, y, z).
init_std: Parameters are initialized using the gaussian distribution
with mean=init_mean and std=init_std. Default 0.1
init_mean: Parameters are initialized using the gaussian distribution
with mean=init_mean and std=init_std. Default 0.
hold_voxel_grid_as_parameters: if True components of the underlying voxel grids
will be saved as parameters and therefore be trainable. Default True.
param_groups: dictionary where keys are names of individual parameters
or module members and values are the parameter group where the
parameter/member will be sorted to. "self" key is used to denote the
parameter group at the module level. Possible keys, including the "self" key
do not have to be defined. By default all parameters are put into "default"
parameter group and have the learning rate defined in the optimizer,
it can be overridden at the:
- module level with “self” key, all the parameters and child
module's parameters will be put to that parameter group
- member level, which is the same as if the `param_groups` in that
member has key=“self” and value equal to that parameter group.
This is useful if members do not have `param_groups`, for
example torch.nn.Linear.
- parameter level, parameter with the same name as the key
will be put to that parameter group.
"""
voxel_grid_class_type: str = "FullResolutionVoxelGrid"
# pyre-fixme[13]: Attribute `voxel_grid` is never initialized.
voxel_grid: VoxelGridBase
extents: Tuple[float, float, float] = (2.0, 2.0, 2.0)
translation: Tuple[float, float, float] = (0.0, 0.0, 0.0)
init_std: float = 0.1
init_mean: float = 0
hold_voxel_grid_as_parameters: bool = True
param_groups: Dict[str, str] = field(default_factory=lambda: {})
def __post_init__(self):
run_auto_creation(self)
n_grids = 1 # Voxel grid objects are batched. We need only a single grid.
shapes = self.voxel_grid.get_shapes(epoch=0)
params = {
name: torch.normal(
mean=torch.zeros((n_grids, *shape)) + self.init_mean,
std=self.init_std,
)
for name, shape in shapes.items()
}
self.set_voxel_grid_parameters(self.voxel_grid.values_type(**params))
self._register_load_state_dict_pre_hook(self._create_parameters_with_new_size)
[docs]
def forward(self, points: torch.Tensor) -> torch.Tensor:
"""
Evaluates points in the world coordinate frame on the voxel_grid.
Args:
points (torch.Tensor): tensor of points that you want to query
of a form (..., 3)
Returns:
torch.Tensor of shape (..., n_features)
"""
locator = self._get_volume_locator()
# pyre-fixme[29]: `Union[Tensor, Module]` is not a function.
grid_values = self.voxel_grid.values_type(**self.params)
# voxel grids operate with extra n_grids dimension, which we fix to one
return self.voxel_grid.evaluate_world(points[None], grid_values, locator)[0]
[docs]
def set_voxel_grid_parameters(self, params: VoxelGridValuesBase) -> None:
"""
Sets the parameters of the underlying voxel grid.
Args:
params: parameters of type `self.voxel_grid.values_type` which will
replace current parameters
"""
if self.hold_voxel_grid_as_parameters:
# pyre-fixme[16]: `VoxelGridModule` has no attribute `params`.
self.params = torch.nn.ParameterDict(
{
k: torch.nn.Parameter(val)
for k, val in vars(params).items()
if val is not None
}
)
else:
# Torch Module to hold parameters since they can only be registered
# at object level.
self.params = _RegistratedBufferDict(vars(params))
[docs]
@staticmethod
def get_output_dim(args: DictConfig) -> int:
"""
Utility to help predict the shape of the output of `forward`.
Args:
args: DictConfig which would be used to initialize the object
Returns:
int: the length of the last dimension of the output tensor
"""
grid = registry.get(VoxelGridBase, args["voxel_grid_class_type"])
return grid.get_output_dim(
args["voxel_grid_" + args["voxel_grid_class_type"] + "_args"]
)
[docs]
def subscribe_to_epochs(self) -> Tuple[Tuple[int, ...], Callable[[int], bool]]:
"""
Method which expresses interest in subscribing to optimization epoch updates.
Returns:
tuple of epochs on which to call a callable and callable to be called on
particular epoch. The callable returns True if parameter change has
happened else False and it must be supplied with one argument, epoch.
"""
return self.voxel_grid.get_resolution_change_epochs(), self._apply_epochs
def _apply_epochs(self, epoch: int) -> bool:
"""
Asks voxel_grid to change the resolution.
This method is returned with subscribe_to_epochs and is the method that collects
updates on training epochs, it is run on the training epochs that are requested.
Args:
epoch: current training epoch used for voxel grids to know to which
resolution to change
Returns:
True if parameter change has happened else False.
"""
# pyre-fixme[29]: `Union[Tensor, Module]` is not a function.
grid_values = self.voxel_grid.values_type(**self.params)
grid_values, change = self.voxel_grid.change_resolution(
grid_values, epoch=epoch
)
if change:
self.set_voxel_grid_parameters(grid_values)
return change and self.hold_voxel_grid_as_parameters
def _create_parameters_with_new_size(
self,
state_dict: dict,
prefix: str,
local_metadata: dict,
strict: bool,
missing_keys: List[str],
unexpected_keys: List[str],
error_msgs: List[str],
) -> None:
'''
Automatically ran before loading the parameters with `load_state_dict()`.
Creates new parameters with the sizes of the ones in the loaded state dict.
This is necessary because the parameters are changing throughout training and
at the time of construction `VoxelGridModule` does not know the size of
parameters which will be loaded.
Args:
state_dict (dict): a dict containing parameters and
persistent buffers.
prefix (str): the prefix for parameters and buffers used in this
module
local_metadata (dict): a dict containing the metadata for this module.
See
strict (bool): whether to strictly enforce that the keys in
:attr:`state_dict` with :attr:`prefix` match the names of
parameters and buffers in this module
missing_keys (list of str): if ``strict=True``, add missing keys to
this list
unexpected_keys (list of str): if ``strict=True``, add unexpected
keys to this list
error_msgs (list of str): error messages should be added to this
list, and will be reported together in
:meth:`~torch.nn.Module.load_state_dict`
Returns:
nothing
"""
'''
new_params = {}
# pyre-fixme[29]: `Union[(self: Tensor) -> Any, Tensor, Module]` is not a
# function.
for name in self.params:
key = prefix + "params." + name
if key in state_dict:
new_params[name] = torch.zeros_like(state_dict[key])
# pyre-fixme[29]: `Union[Tensor, Module]` is not a function.
self.set_voxel_grid_parameters(self.voxel_grid.values_type(**new_params))
[docs]
def get_device(self) -> torch.device:
"""
Returns torch.device on which module parameters are located
"""
# pyre-fixme[29]: `Union[(self: TensorBase) -> Tensor, Tensor, Module]` is
# not a function.
return next(val for val in self.params.values() if val is not None).device
[docs]
def crop_self(self, min_point: torch.Tensor, max_point: torch.Tensor) -> None:
"""
Crops self to only represent points between min_point and max_point (inclusive).
Args:
min_point: torch.Tensor of shape (3,). Has x, y and z coordinates
smaller or equal to all other occupied points.
max_point: torch.Tensor of shape (3,). Has x, y and z coordinates
bigger or equal to all other occupied points.
Returns:
nothing
"""
locator = self._get_volume_locator()
# torch.nn.modules.module.Module]` is not a function.
# pyre-fixme[29]: `Union[Tensor, Module]` is not a function.
old_grid_values = self.voxel_grid.values_type(**self.params)
new_grid_values = self.voxel_grid.crop_world(
min_point, max_point, old_grid_values, locator
)
grid_values, _ = self.voxel_grid.change_resolution(
new_grid_values, grid_values_with_wanted_resolution=old_grid_values
)
# pyre-fixme[16]: `VoxelGridModule` has no attribute `params`.
self.params = torch.nn.ParameterDict(
{
k: torch.nn.Parameter(val)
for k, val in vars(grid_values).items()
if val is not None
}
)
# New center of voxel grid is the middle point between max and min points.
self.translation = tuple((max_point + min_point) / 2)
# new extents of voxel grid are distances between min and max points
self.extents = tuple(max_point - min_point)
def _get_volume_locator(self) -> VolumeLocator:
"""
Returns VolumeLocator calculated from `extents` and `translation` members.
"""
return VolumeLocator(
batch_size=1,
# The resolution of the voxel grid does not need to be known
# to the locator object. It is easiest to fix the resolution of the locator.
# In particular we fix it to (2,2,2) so that there is exactly one voxel of the
# desired size. The locator object uses (z, y, x) convention for the grid_size,
# and this module uses (x, y, z) convention so the order has to be reversed
# (irrelevant in this case since they are all equal).
# It is (2, 2, 2) because the VolumeLocator object behaves like
# align_corners=True, which means that the points are in the corners of
# the volume. So in the grid of (2, 2, 2) there is only one voxel.
grid_sizes=(2, 2, 2),
# The locator object uses (x, y, z) convention for the
# voxel size and translation.
voxel_size=tuple(self.extents),
# volume_translation is defined in `VolumeLocator` as a vector from the origin
# of local coordinate frame to origin of world coordinate frame, that is:
# x_world = x_local * extents/2 - translation.
# To get the reverse we need to negate it.
volume_translation=tuple(-t for t in self.translation),
device=self.get_device(),
)
[docs]
def get_grid_points(self, epoch: int) -> torch.Tensor:
"""
Returns a grid of points that represent centers of voxels of the
underlying voxel grid in world coordinates at specific epoch.
Args:
epoch: underlying voxel grids change resolution depending on the
epoch, this argument is used to determine the resolution
of the voxel grid at that epoch.
Returns:
tensor of shape [xresolution, yresolution, zresolution, 3] where
xresolution, yresolution, zresolution are resolutions of the
underlying voxel grid
"""
xresolution, yresolution, zresolution = self.voxel_grid.get_resolution(epoch)
width, height, depth = self.extents
if not self.voxel_grid.get_align_corners():
width = (
width * (xresolution - 1) / xresolution if xresolution > 1 else width
)
height = (
height * (xresolution - 1) / xresolution if xresolution > 1 else height
)
depth = (
depth * (xresolution - 1) / xresolution if xresolution > 1 else depth
)
xs = torch.linspace(
-width / 2, width / 2, xresolution, device=self.get_device()
)
ys = torch.linspace(
-height / 2, height / 2, yresolution, device=self.get_device()
)
zs = torch.linspace(
-depth / 2, depth / 2, zresolution, device=self.get_device()
)
xmesh, ymesh, zmesh = torch.meshgrid(xs, ys, zs, indexing="ij")
return torch.stack((xmesh, ymesh, zmesh), dim=3)
class _RegistratedBufferDict(torch.nn.Module, Mapping):
"""
Mapping class and a torch.nn.Module that registeres its values
with `self.register_buffer`. Can be indexed like a regular Python
dictionary, but torch.Tensors it contains are properly registered, and will be visible
by all Module methods. Supports only `torch.Tensor` as value and str as key.
"""
def __init__(self, init_dict: Optional[Dict[str, torch.Tensor]] = None) -> None:
"""
Args:
init_dict: dictionary which will be used to populate the object
"""
super().__init__()
self._keys = set()
if init_dict is not None:
for k, v in init_dict.items():
self[k] = v
def __iter__(self) -> Iterator[Dict[str, torch.Tensor]]:
return iter({k: self[k] for k in self._keys})
def __len__(self) -> int:
return len(self._keys)
def __getitem__(self, key: str) -> torch.Tensor:
return getattr(self, key)
def __setitem__(self, key, value) -> None:
self._keys.add(key)
self.register_buffer(key, value)
def __hash__(self) -> int:
return hash(repr(self))